

0040-4020(94)E0197-2

Synthèse de la Dolastatine 10 et de la [R-Doe]-Dolastatine 10

Florence Roux, Isabelle Maugras, Joël Poncet*, Gilles Niel et Patrick Jouin

Laboratoire des Mécanismes Moléculaires des Communications Cellulaires (UPR 9023 CNRS) Centre CNRS-INSERM, rue de la Cardonille, 34094 Montpellier Cedex 5 France.

Abstract : A stepwise synthesis of dolastatin 10 starting from the dolaphenine residue is described. The chiral dola isoleuine and dolaproine residues were obtained by 5-step procedures from the corresponding N-Boc amino acid. The key steps are respectively the NaBH₄ reduction of an allylic ketone and the addition of an achiral Z-crotylboronate on the N-Boc-L-prolinal. Peptidic couplings were efficiently realised with reagents developed in the laboratory.

Dolabella auricularia est un mollusque marin de l'Océan Indien connu depuis l'Antiquité pour la toxicité de ses extraits¹. C'est au groupe de Pettit de l'Université d'Arizona que l'on doit l'isolement et la caractérisation d'une série de pseudopeptides cytotoxiques originaux constituant la famille des dolastatines². Parmi ceux-ci, la dolastatine 10 (1) présente l'activité antinéoplasique la plus puissante. Des études menées

sur son mécanisme d'action ont montré que ce composé posséde un site de fixation sur la sous-unité β de la tubuline et est capable d'inhiber sa polymérisation³. Cependant, les premières relations structure-activité semblent montrer qu'il n'y a pas de corrélation entre ce dernier résultat et l'activité cytotoxique⁴. Les potentialités biologiques de ce composé⁵ associées à la difficulté de disposer de quantités appréciables par extraction du milieu naturel rendent son accès par synthèse chimique indispensable, et plusieurs groupes ont déjà publié des travaux dans ce domaine⁶. Notre laboratoire est impliqué depuis plusieurs années dans l'étude

de pseudopeptides d'origine marine⁷. Après des travaux publiés récemment sur la synthèse de la dolastatine 15⁸, un autre pseudopeptide apparenté, nous décrivons ici une nouvelle synthèse de la dolastatine 10 (1).

La dolastatine 10 est constituée de 5 résidus reliés par des liaisons amidiques. D'un point de vue stratégique, nous avons opté pour une synthèse récurrente partant de la dolaphénine (Doe) et impliquant le couplage successif des 4 autres résidus. L'essentiel des difficultés réside dans la mise au point de synthèses stéréoselectives pour les résidus Dil et Dap.

La préparation de Dil a été abordée, d'une part, par condensation aldolique, et d'autre part, par réduction du β -cétoester correspondant⁶. L'étape délicate dans ce dernier cas est la méthylation des fonctions amine et alcool. Nous avons fait le choix de la réduction et de la méthylation du précurseur allylique 3 suivant le schéma de synthèse décrit précédemment pour l'analogue de Dil possédant un groupement *i*Pr en C-4⁹. A partir de Boc-L-Ile, le même processus réactionnel conduit en 5 étapes à Boc-Dil (8) avec un rendement global de 48% et une diastéreosélectivité supérieure à 98% (schéma 1).

Schéma 1. a : MeNH-OMe, PyBOP, DIEA, 90%; b : AllylMgBr, Et₂O; c : NaBH₄, MeOH, 74% pour deux étapes; d : NaH, MeI, THF, 85%; c : NaIO₄, RuO₂, CCl₄, MeCN, H₂O, 85%.

Pour le résidu Dap, il faut contrôler la stéréochimie d'un centre chiral supplémentaire en C-2. Les équipes de Pettit^{6a} et de Shioiri^{6c} ont effectué ce contrôle grâce à l'utilisation d'auxiliaires chiraux. Par contre, le groupe de Koga^{6b} a décrit la condensation d'un Z-boroénolate achiral sur le Boc-prolinal qui fournit l'isomère attendu (2R,3R,2'S) avec un rendement de 64% accompagné des isomères (2S,3S,2'S) (10%) et (2R,3S,2'S) (1%). Par analogie avec la synthèse de Dil, nous avons envisagé la rétrosynthèse décrite dans le

Le boronate 10 présente l'avantage d'être achiral ainsi que celui de permettre la réaction de condensation à température ambiante¹¹ Ce réactif est préparé en suivant la méthode de Roush et coll.¹² par transestérification du complexe cristallin 9 obtenu en trois étapes à partir de B(O-iPr)₃ (Schéma 3). La condensation de ce boronate sur Boc-Pro-H (12), préparé selon Fehrentz et Castro¹³, conduit après 72 h à tem

Schéma 3. a : tBuOK, nBuLi, THF; b : BO(iPr)₂; c : HCl 1N; d : diethanolamine,51% pour 4 étapes; e : pinacol, THF/saumure, 50/50, 100%

pérature ambiante dans le THF aux 4 diastéréoisomères possibles (2S,1'R,2'S), (2S,1'S,2'R), (2S,1'R,2'R) et (2S,1'S,2'S) dans le rapport 84-9-5-2 avec un rendement global de 85% (schéma 4). L'alcool majoritaire 13a, précurseur de la dolaproïne, est isolé avec un rendement de 72%. L'attribution des configurations absolues en C-1' des autres isomères a été effectuée par mesure de la constante de couplage J4-5 sur les oxazolidinones correspondantes obtenues par cyclisation à l'hydrure de sodium dans le THF (schéma 4). Nous avons ainsi vérifié que pour l'oxazolidinone 14a obtenue à partir de 13a, cette constante est de 6,9 Hz ce qui correspond bien à la stéréochimie cis attendue¹⁴. Une valeur comparable (6.8 Hz) est obtenue pour 14c, ce qui permet d'attribuer la structure (2S,1'R,2'R) à 13c. Pour 14b et 14d cette constante est de 4,5 Hz ce qui correspond à une stéréochimie trans mais ne permet pas de conclure sur la configuration de C-2' dans 13b ou 13d. L'attribution complète a été effectuée en transformant 13b en 15 par la séquence suivante : méthylation (NaH, MeI), oxydation (RuO₄), esterification (CH₂N₂), déprotection (TFA) et cyclisation (K₂CO₃). La constante de couplage J_{1-2} est de 1,3 Hz, alors que J_{1-8} est de 5,1 Hz ce qui est en accord avec un enchaînement de type éclipsé pour H-8 H-1 et anticlinal pour H-1 H-2. La configuration de 13b est donc (2S,1'S,2'R) et par voie de conséquence (2S,1'S,2'S) pour 13d. On peut remarquer que, conformément aux prédictions d'Hoffmann la réaction du Z-crotylboronate 10 sur le Boc-prolinal fournit majoritairement les composés 1'-2' syn 13a et 13b avec une diastéréosélectivité globale de 86%. De plus, l'obtention majoritaire des composés de configuration

1'-2 anti est en accord avec les résultats obtenus par d'autres auteurs sur des aldéhydes possédant un centre chiral en α^{15} . Une étude plus complète évaluant l'influence de centres chiraux sur le boronate mais également comparant boronates et boranes est en préparation¹⁶.

Schéma 4. a : McNiH-OMc, BOP, DIEA, CH₂Cl₂, 82%; b, AlLiH₄, THF, 89%; c, 10, THF, 64%; d : NaH, Mcl, DMF, 90%; e : RuO₄, CCl₄, MeCN, H₂O, 81%; *i* : NaH, THF; g : CH₂N₂, Et₂O, 100%; h : TFA, 90%; i : K₂CO₃, MeOH, H₂O, 55%.

L'alcool majoritaire 13a est transformé en 16 par méthylation à l'iodure de méthyle dans le DMF avec un rendement de 90%. Dans ce solvant la formation d'oxazolidine n'est pas détectée. L'éther homoallylique 16 peut alors être oxydé à l'aide de RuO₄ dans les conditions décrites par Sharpless¹⁷ pour conduire après 48h à la dolaproïne 17 avec un rendement de 81%. Ce résultat n'est reproductible que pour des quantités de l'ordre de la mmole. Par contre, pour des quantités plus importantes, si on constate effectivement la disparition de l'alcène 16, il est très difficile de consommer complètement l'aldéhyde intermédiaire malgré l'ajout de réactifs supplémentaires et des temps de réaction plus longs, et les rendements excèdent alors difficilement 50%. Il est alors préférable d'opérer en deux étapes. Dans un premier temps, l'alcène 16 est oxydé dans les conditions précédentes jusqu'à disparition (environ 6h). Le brut réactionnel, après lavage, est remis en réaction dans les conditions d'oxidation de Masamune (KMnO₄, tBuOH)¹⁸, ce qui conduit à 17 isolé avec un rendement de 84%. Cette méthode a permis de traiter des lots de 10-20 mmoles de façon très reproductible. La dolaproïne est ainsi préparée en 5 étapes à partir de Boc-Pro avec un rendement global de 27-30% et ce sur des quantités de plusieurs grammes.

Les diverses voies d'accès à la dolaphénine ont été récemment examinées par Shioiri et coll¹⁹. Nous avons nous mêmes envisagé les deux voies qui partent de Z-L-Phe et dont les étapes clés sont soit l'oxydation de la thiazolidine par MnO_2 , soit la réaction de Hantzsch entre le bromacétaldéhyde et le thioamide (Schéma 5). Dans le premier cas, si la formation de la thiazolidine est évidente, nous avons été confrontés aux mêmes

Schéma 5

difficultés pour l'oxyder que les autres équipes et n'avons pu obtenir la dolaphénine avec un rendement meilleur que 11%. La voie utilisant la méthode de Hantzsch présente l'avantage de donner de bons rendements mais conduit à un composé totalement racémisé. La modification de cette méthode décrite par Schmidt qui consiste à effectuer cette réaction en deux étapes successives, condensation du bromoacétaldéhyde et deshydratation de la 4-hydroxythiazoline résultante²⁰, a également fournit un produit complètement racémisé bien que Shioiri annonce par ce procédé un excès énantiomérique de 53%. Une analyse du mécanisme de cette réaction a été faite récemment par Bredenkamp et coll. qui propose le remplacement du DMF par un solvant aprotique tel que le DME²¹. Dans ces conditions, les essais que nous avons effectués ont également conduit à des lots de dolaphénine partiellement racémisée (ee 50%). Compte tenu des études de structure-activité que nous avons entreprises nous avons utilisé des lots racémisés synthétisés par la méthode de Schmidt, dans la mesure où les deux énantiomères peuvent être séparés très facilement après couplage au résidu Dap.

La construction de la dolastatine 10 (1) et de l'épimère 23 ((R)-Doe au lieu de (S)-Doe) a été effectué comme indiqué dans le schéma 6. Le couplage de Boc-Dap (17) et de (\pm) HBr,Doe (19) est réalisé à l'aide du

Schéma 6: i) HBr/AcOH, 99%; ii) BOP, DIEA, 88%; iii) TFA, 99%; iv) BOP, DIEA, 82% pour a et 96% pour b; v) TFA, 99%; vi) BroP, DIEA, 75% pour a et 70% pour b; vii) HBr/ AcOH, 94%; viii) COMMOD, 53% pour 1 et 51% pour 23 sprès purification par CLHP.

a) Avec (S)-Doe, composés de la série a; avec (R)-Doe, composés de la série b.

BOP²² et conduit avec un rendement global de 88% au mélange des deux épimères **20a,b** que l'on sépare par chromatographie sur gel de silice. L'isomère Boc-Dap-(S)-Doe a été identifié par comparaison du pouvoir rotatoire avec celui du composé identique précédemment synthétisé par Shioiri.^{6c} Le produit de déprotection (TFA) de **20a** est couplé à Boc-Dil (7) en utilisant également le BOP pour conduire à Boc-Dil-Dap-Doe (**21a**) (82%). Pour l'introduction de la valine nous avons utilisé le réactif BroP qui est mieux adapté au couplage des N-méthyl-amino acides²³ et une protection par un groupement Z puisqu'il a été montré que le groupement Boc favorise la formation de N-carboxyanhydride au détriment du rendement en peptide²⁴. De plus, la déprotection de **20a** doit être effectuée par HCl plutôt qu'au TFA, ce dernier pouvant être activé dans ces conditions et donc acyler l'amine²⁵. Dans ces conditions **22a** est isolé avec un rendement de 75%. Enfin, Dov est introduit par activation à l'aide du COMMOD²⁶. Nous avons en effet noté que les réactifs de type phosphonium (BOP, PyBOP, BroP, PyCloP) provoquent une décomposition de ce résidu. Le produit **1** ainsi obtenu (53%, après purification par CLHP) présente les mêmes caractéristiques physicochimiques que la dolastatine 10. Parallèlement, l'analogue 23 a été synthétisé par la même séquence de réactions à partir de (R)-Doe.

La stratégie de synthèse mise au point lors de ce travail nous a permis de synthétiser efficacement, outre la dolastatine 10 et l'épimère 23, une série d'analogues dont les caractéristiques structurales et les activités biologiques sont en cours d'évaluation.

PARTIE EXPERIMENTALE

Les séparations sur colonnes chromatographiques ont été réalisées sur gel de silice (63-200 mm) et les analyses CCM sur silice couchée sur aluminium. Les spectres ¹H-RMN ont été acquis à 360 MHz. Les analyses de spectrométrie de masse ont été effectuées par le Service d'Analyse de L'Université des Sciences et Techniques du Languedoc, et les analyses centésimales par le Service de Microanalyse du CNRS. Les analyses CLHP ont été réalisées sur colonne C8 Ultrabase 5 μ (Shandon) 4,6x150 mm à un débit de 1,5 ml/mn en utilisant comme éluant des gradients constitués de mélanges croissants de B (acétonitrile - 0,1% TFA) dans A (eau - 0,1% TFA), la détection se faisant à l'aide d'un détecteur UV à barette de diodes.

N-(*tert*-Butoxycarbonyl)-L-isoleucine *N'*-méthoxy-*N'*-méthylamide (2). On applique la procédure décrite par Fehrentz et Castro¹³. A une solution de Boc-Ile-OH (14,42 g, 60 mmol) dans CH₂Cl₂ (120 ml) sont ajoutés successivement H-N(OMe)Me,HCl (7,02 g, 72 mmol), DIEA (180 mmol, 31,55 ml) et PyBOP (31,2 g, 60 mmol). Après 1,5 h d'agitation à température ambiante, le solvant est éliminé et le résidu repris à AcOEt (200 ml). La solution est lavée successivement avec KHSO₄ 5%, H₂O, NaHCO₃ 5% et une solution saturée en NaCl. La phase organique est séchée sur Na₂SO₄, filtrée puis concentrée sous pression réduite. Le résidu est purifié sur gel de silice (AcOEt/Hexane, 3:7) et conduit à 2 sous forme d'huile (15,37 g, 90%); Rf = 0,38 (AcOEt/Hexane, 3:7); $[\alpha]^{20}$ -23 (c = 1, MeOH); FABMS *m/e* (int. rel.) 275 (MH⁺, 70), 219 (MH⁺-C₄H₈, 100), 86 (C₅H₁₂N⁺, 58).

(4R,5S,6S)-5-(tert-Butoxycarbonylamino)-6-méthyl-1-octen-4-ol (5). En suivant le procédé décrit dans un travail antérieur⁹, 2 (14,18 g, 51,75 mmol) conduit par action du bromure d'allylmagnésium à un mélange sous forme d'huile (13 g) de 3 et 4 non séparés en CCM (Rf = 0,44 (AcOEt/Hexane, 2:8)). Ce mélange est traité par NaBH₄ comme déjà décrit⁹ pour fournir après séparation sur colonne de silice (AcOEt/Hexane, 1:9): 4 (2,38 g) et 5 (8,82 g, 74% depuis 2).

4: Rf = 0,44 (AcOEt/Hexane, 2:8); ¹H-RMN (DMSO- d_6) δ 0,80-0,86 (massif, 6 H, 6-Me + 8-H₃), 1,38 (s, 9 H, tBu), 1,73-1,87 (m, 2 H, 7-H₂), 2,05-2,27 (massif, 5 H, 1'-H₂ + 3-H₂ + 6-H), 3,30 (dd, J₁ = 1,9 J₂ = 10,4 Hz, 1 H, 5-H), 4,26 (s, 1 H, OH), 4,98-5,08 (m, 4 H, 1-H₂ + 3'-H₂), 5,73-5,84 (m, 2 H, 2-H + 2'H), 5,93 (d, J = 10,4 Hz, 1 H, NH); FABMS *m/e* (int. rel.): 298 (MH⁺, 15), 242 (MH⁺-C₄H₈, 22), 86 (C₅H₁₂N⁺, 37), 57 (tBu⁺, 100).

5: Rf = 0,33 (AcOEt/Hexane, 2:8); $[\alpha]^{20}_{D}$ +12 (c = 1, MeOH); ¹H-RMN (DMSO-*d₆*) δ 0,74-0,82 (massif, 6 H, 6-Me + 8-H₃), 0,85-0,98 (m, 1 H, 7-H), 1,32-1,50 (m, 1H, 7-H'), 1,36 (s, 9 H, tBu), 1,68-1,79 (m, 1 H, 6-H), 1,93-2,04 (m, 1 H, 3-H), 2,15-2,24 (m, 1 H, 3-H'), 3,23-3,32 (m, 1 H, 5-H), 3,40-3,48 (m, 1 H, 4-H), 4,47

(d, J = 6,6 Hz, 1 H, OH), 4,94-5,04 (m, 2 H, 1-H₂), 5,79-5,90 (m, 1 H, 2-H), 6,37 (d, J = 6,4 Hz, 1H, NH); FABMS *m/e* (int. rel.) 258 (MH⁺, 36), 202 (100), 158 (MH⁺-Boc, 38), 86 (C₅H₁₂N⁺, 64); Anal. Calc. pour C₁₄H₂₇NO₃: C 65,3; H 10,6; N 5,4. Trouvé: C 65,2; H 10,6; N 5,6.

(35,45,5R)-N-Méthyl-N-(tert-butoxycarbonyl)-(3-méthyl-5-méthoxy-7-octen-4-yl)amine (6). Par traitement à l'iodure de méthyle en suivant le procédé décrit dans un travail antérieur⁹, à partir de 5 (7,00 g, 27,2 mmol) on obtient après chromatographie sur gel de silice (AcOEt/Hexane, 1:9), l'éther attendu 6 (5,95 g, 85%), ainsi que l'oxazolidin-2-one correspondante 7 (0,64 g, 12%). Rf = 0,65 (AcOEt/Hexane, 2:8); $[\alpha]^{20}_{D}$ -18 (c = 1, MeOH); ¹H-RMN (DMSO-*d*₆) (2 conformères 55:45): δ 0,80-0,91 (massif, 6 H, 3-Me + 1-H₃), 1,39 (s, 4 H, tBu min.), 1,38 (s, 5 H, tBu maj.), 0,92-1,06 (m, 1 H, 2-H), 1,33-1,46 (m, 1 H, 2-H'), 1,70-1,84 (m, 1 H, 3-H), 2,02-2,12 (m, 1 H, 6-H), 2,28-2,37 (m, 1 H, 6-H'), 2,63 (s, 1,7 H, NMe maj.), 2,60 (s, 1,3 H, NMe min.), 3,27 (s, 1,7 H, OMe maj.), 3,26 (s, 1,3 H, OMe min.), 3,35-3,47 (m, 1 H, 5-H), 3,75-3,95 (m, 1H, 4-H), 4,96-5,10 (m, 2H, 8-H2), 5,73-5,88 (m, 1H, 7-H); FABMS *m/e* (int. rel.) 286 (MH⁺, 23), 230 (MH⁺-C4H₈, 46), 186 (MH⁺-Boc, 80), 144 (100); Anal. Calc. pour C₁₆H₃₁NO₃: C 67,3; H 11,0; N 4,9. Trouvé: C 67,0; H 11,3; N 5,1.

(1'S,4S,5R)-3-Méthyl-5-allyl-4-sec-butyl-1,3-oxazolidin-2-one (7). Rf = 0,11 (AcOEt/Hexane, 2/8); $[\alpha]^{20}_{D}$ -8 (c = 1, MeOH); ¹H-RMN (DMSO-d₆) δ 0,89-0,93 (m, 3 H, 3-H₃ (sBu)), 0,99 (d, J = 7,1 Hz, 3 H, 1-Me (sBu)), 1,03-1,17 (m, 1 H, 2-H (sBu)), 1,35-1,48 (m, 1 H, 2-H' (sBu)), 1,64-1,75 (m, 1 H, 1-H (sBu)), 2,34-2,53 (m, 2 H, 1-H₂ (allyle)), 2,80 (s, 3 H, NMe), 3,64 (dd, J₁ = 2,3 J₂ = 7,9 Hz, 1 H, 4-H), 4,51-4,57 (m, 1 H, 5-H), 5,09-5,19 (m, 2 H, 3-H₂ (allyle)), 5,75-5,86 (m, 1 H, 2-H (allyle)]; FABMS *m/e* (int. rel.) 395 (M₂H⁺, 20), 198 (MH⁺, 100).

Acide (3R,4S,5S)-4-(*tert*-butoxycarbonylamino)-3-méthoxy-5-méthyl-heptanoïque (8). Ce composé est préparé par oxydation de 6 (5,7 g, 20 mmol) à l'aide de RuO₄ comme décrit dans la ref 9. On obtient 8 sous forme d'huile (5.17 g, 85%) après chromatographie sur gel de silice (éluant : CH₂Cl₂/MeOH, 95:5). Rf = 0,53 (AcOEt/Hexane/AcOH, 50:50:1); $[\alpha]^{20}_{D}$ -1° (c = 1, MeOH) (lit.: -10,5 (c = 0,97, MeOH)^{6c}); ¹H-RMN (DMSO-d₆) (2 conformères 47:53) δ 0,81-0,89 (massif, 6 H, 7-H₃ + 5-Me), 0,89-0,95 (m, 1 H, 6-H), 1,34-1,43 (m, 1 H, 6-H'), 1,39 (s, 9 H, tBu), 1,70-1,82 (m, 1 H, 5-H), 2,22-2,29 (m, 1 H, 2-H), 2,42-2,49 (m, 1 H, 2-H'), 2,6 (s, 3 H, N-Me), 3,25 (s, 1,41 H, OMe min.), 3,28 (s, 1,59 H, OMe maj.), 3,73-3,81 (m, 1 H, 3-H), 3,83-4,03 (m, 1 H, 4-H), 12,28 (s, 1 H, CO₂H); FABMS *m/e* (int. rel.): 304 (MH⁺, 20), 248 (MH⁺-C4H₈, 42), 204 (MH⁺-Boc, 80), 57 (100, tBu⁺). Anal. Calc. pour C₁₅H₂₉NO₅: C 59,4; H 9,6; N 4,6. Trouvé: C 58,9; H 9,9; N 4,7.

2-[(Z)-2-butényl]-4,4,5,5-tétraméthyl-1,3,2-dioxaborolane (10). Le pinacol (7,9 g, 66,6 mmol) est dissous dans un mélange 50:50 (420 ml) de THF et d'eau saturée en NaCl. Le 2-[(Z)-2-butényl]-1,3,6,2-perhydrodioxazaborocine (7,50 g, 44,4 mmol) préparé selon Roush et coll.¹², est ensuite ajouté à température ambiante. Le mélange réactionnel est placé sous agitation magnétique vigoureuse pendant 18h. La phase

aqueuse est extraite plusieurs fois à Et_2O . Les phases organiques jointes sont ensuite séchées sur Na_2SO_4 , filtrées et concentrées à sec sous pression réduite, pour donner 10 sous forme d'une huile jaune (11,2 g, 92%).

N-(*tert*-Butoxycarbonyl)-L-proline *N'*-méthoxy-*N'*-méthyllamide (11). En suivant la procédure décrite pour la préparation de 2, à partir de Boc-Pro-OH (14,00 g, 65,0 mmol), on obtient 11 sous forme d'une huile jaune (14,1 g, 82%) après chromatographie sur colonne de silice (300 g, AcOEt/Pentane, 50:50). Rf = 0,33 (AcOEt/Pentane: 50:50); $[\alpha]^{20}_{D}$ -40 (c=1, MeOH);¹H-RMN (CDCl₃) (2 conformères 52:48) δ 1,39 (s, 4,7 H, tBu maj.), 1,44 (s, 4,3 H, tBu) min., 1,73-2,02 (m, 3 H, Hβ +H₂γ), 2,07-2,24 (m, 1 H, Hβ), 3,16 (s, 3 H, NMe), 3,34-3,60 (m, 2 H, H₂δ), 3,69 (s, 1,44 H, OMe min.), 3,86 (s, 1,56 H, OMe maj.), 4,57 (dd, J₁ = 8,4 J₂ = 3,6 Hz, 0,48 H, Hα min.), 4,68 (dd, J₁ = 8,4 J₂ = 3,6 Hz, 1 H, Hα maj.); FABMS *m/e* (int. rel.) 517 (M₂H⁺, 9), 417 (M₂H⁺-Boc, 4) 259 (MH⁺, 20), 159 (MH⁺ Boc, 71), 57 (tBu⁺, 35).

N-(*tert*-Butoxycarbonyl)-L-prolinal (12). On utilise la procédure décrite par Fehrentz et Castro¹³. Sous atmosphère d'argon, Boc-Pro-N(OMe)Me (11) (13,8 g, 53,5 mmol) est dissous dans du THF anhydre (300 ml). La solution est refroidie à 0°C et on ajoute AlLiH₄ par portions (2,55 g, 67 mmol). Après 1h d'agitation à température ambiante, le mélange réactionnel est à nouveau refroidi à 0°C pour être hydrolysé par une solution de KHSO₄ 5%. La phase aqueuse est extraite plusieurs fois à Et₂O. Les phases organiques sont ensuite lavées successivement avec NaHCO₃ 5% et H₂O saturée en NaCl, puis séchées sur Na₂SO₄, filtrées et concentrées à sec sous pression réduite. On récupère l'aldéhyde 12 (9,5 g, 89%) sous forme d'une huile incolore et homogène en CCM. Rf = 0,65 (AcOEt/pentane: 30:70). Ce composé est immédiatement remis en réaction.

(2S)-N-(tert-Butoxycarbonyl)-2-(1'-hydroxy-2'-méthyl-3'-butényl)-pyrrolidines (13)

A une solution refroidie à -5 °C de Boc-prolinal (12) (8,00 g, 40,4 mmol) dans du THF (250 ml) est ajoutée une solution de 10 (11,2 g) dans du THF (200 ml). Après l'addition, le mélange réactionnel est maintenu sous agitation pendant 3 jours à température ambiante. La solution est alors concentrée sous pression réduite et le brut (17 g) chromatographié 2 fois successivement sur colonne de gel de silice (500 g, AcOEt/Pentane 5:95 à 20:80). On obtient 13d (0,19 g), 13b (0,76 g), 13c (0,44 g) et le produit attendu 13a (7,45 g, 72%). L' analyse CLHP du brut (gradient de 20 à 30% de B en 5 mn, de 30 à 40% en 25 mn et de 40 à 60% en 10 mn) donne: TR = 26,6 min, 13c (4,7%); TR = 27,3 min, 13a (84,1%); TR = 32,4 min, 13b (9,0%); TR = 34,4 min, 13d (2,2%).

13a: Rf = 0,24 (AcOEt/Pentane 20:80); PF = 67-68°C; $[\alpha]^{20}_{D}$ -71 (c=1, MeOH); ¹H-RMN (DMSO-*d*₆) δ 1,00 (d, J = 6,7 Hz, 3 H, CH₃), 1,39 (s, 9H, Boc), 1,57 & 1,72 (m, 2 H, 4 -H et 4-H'), 1,71 & 1,94 (m, 2 H, 3-H et 3-H'), 2,00 & 2,50 (m, 1 H, 2'-H), 3,08 & 3,26 (m, 1 H, 5-H), 3,30 & 3,39 (m, 1 H, 5-H'), 3,54 & 3,65 (m, 1 H, 1'-H), 3,71 & 3,73 (m, 1 H, 2-H), 4,60 & 4,62 (m, 0,4 H, OH), 4,70 (d, J = 4,4 Hz, 0,6 H, OH), 4,94 (dd, J₁ = 10,0 J₂ = 2,0 Hz, 1 H, 4'-H), 5,00 (dd, J₁ = 17,2 J₂ = 2,0 Hz, 1 H, 4'-H'), 5,61 & 5,78 (m, 1 H, 3'-H); FABMS *m/e* (int. rel.) 256 (MH⁺, 28), 200 (MH⁺- isobutène, 65), 156 (MH⁺- Boc, 24), 114 (HCO₂-pyrrolinium, 70 (pyrrolinium, 100); Anal. calc. pour C₁₄H₂₅NO₃: C, 65,9; H, 9,9; N, 5,5. Trouvé C, 66,1; H, 10,1; N, 5,1.

13b: Rf = 0,52 (AcOEt/Pentane 20:80); huile $[\alpha]^{20}$ -72 (c=1, MeOH); ¹H-RMN (DMSOd₆) 0,96 (d, J = 6,7 Hz, 3 H, CH₃), 1,39 (s, 9H, Boc), 1,64 à 1,87 (m, 4 H, 4 -H₂ et 3-H₂), 2,15 à 2,24 (m, 1 H, 2'-H), 3,05 à 3,15 (m, 1 H, 5-H), 3,28 à 3,37 (m, 1 H, 5-H'), 3,40 à 3,47 (m, 1 H, 1'-H), 3,82 à 3,87 (m, 1 H, 2-H), 4,40 à 4,80 (large, 1 H, OH), 4,86 (dd, J₁ = 10,5 J₂ = 2,0 Hz, 1 H, 4'-H_Z), 4,96 (d, J = 17,3 Hz, 1 H, 4'-H_E), 5,78 (h, J₁ = 10,5 J₂ = 17,3 J₃ = 7,8 Hz, 1 H, 3'-H).

13c: Rf = 0,30 (AcOEt/Pentane 20:80); PF = 61-62°C; $[\alpha]^{20}D$ -77 (c=1,09, MeOH); ¹H-RMN (DMSOd₆) 0,94 (d, J = 6,8 Hz, 3 H, CH₃), 1,39 (s, 9H, Boc), 1,56 à 1,96 (m, 4 H, 4 -H₂ et 3-H₂), 2,08 à 2,17 (m, 1 H, 2'-H), 3,10 à 3,20 (m, 1 H, 5-H), 3,30 à 3,38 (m, 1 H, 5-H'), 3,60 à 3,67 (m, 1 H, 1'-H), 3,72 à 3,80 (m, 1 H, 2-H), 4,59 (large, 1 H, OH), 4,92 (d, J = 10,5 Hz, 1 H, 4'-Hz), 4,98 (d, J = 17,6 Hz, 1 H, 4'-HE), 5,89 (h, J₁ = 10,5 J₂ = 17,6 J₃ = 7,4 Hz, 1 H, 3'-H).

13d: Rf = 0,60 (AcOEt/Pentane 20:80); huile; $[\alpha]^{20}_D$ -39 (c=1,03, MeOH); ¹H-RMN (DMSO-*d*₆) 1,01 (d, J = 6,8 Hz, 3 H, CH₃), 1,40 (s, 9H, Boc), 1,60 à 1,86 (m, 4 H, 4 -H₂ et 3-H₂), 2,19 à 2,29 (m, 1 H, 2'-H), 3,13 à 3,23 (m, 1 H, 5-H), 3,25 à 3,32 (m, 1 H, 1'-H), 3,37 à 3,45 (m, 1 H, 5-H'), 3,75 à 3,85 (m, 1 H, 2-H), 4,81 (large, 1 H, OH), 4,98 (d, J = 9,7 Hz, 1 H, 4'-H₂), 4,99 (d, J = 18,0 Hz, 1 H, 4'-H_E), 5,88 (h, J₁ = 9,7 J₂ = 18,0 J₃ = 8,6 Hz, 1 H, 3'-H).

4-(1-méthyl-2-propényl)-3,1-oxazabicyclo[3.3.0]octan-2-ones (14a-d)

A une solution refroidie à -5 °C de 12 dans du THF anhydre, on ajoute par portions NaH (dispersion à 60% dans l'huile, 2 eq) et laisse agiter pendant 16h à température ambiante. Après hydrolyse à l'aide de KHSO4 5%, le milieu est dilué à l'éther, lavé à NaHCO3 5% puis NaCl saturé, séché et concentré sous vide.

14a: ¹H-RMN (CDCl₃) δ_{H5} 3.73 ppm, J₄₋₅ 6.9 Hz

14b: ¹H-RMN (CDCl₃) δ_{H5} 3.60 ppm, J₄₋₅ 4.5 Hz

14c: ¹H-RMN (CDCl₃) δ_{H5} 3.74 ppm, J₄₋₅ 6.9 Hz

14d: ¹H-RMN (CDCl₃) δ_{H5} 3.60 ppm, J₄₋₅ 4.5 Hz

(1S, 2S,, 8S)-1-méthoxy-2-méthyl-pyrrolizidin-3-one (15)

A une solution refroidie à -5°C de 13b (215 mg, 0,84 mmol) et MeI (0,43 ml, 6,9 mmol) dans du DMF anhydre (6 ml), on ajoute par portion NaH (40 mg, 0,95 mmol). On laisse agiter à température ambiante pendant 24h. Après ajout de H₂O (1 ml), le DMF est évaporé sous pression réduite. Le résidu obtenu est repris à AcOEt (15 ml) et lavé successivement par KHSO4 5%, NaHCO3 5%, Na₂S₂O₃ 10%, et une solution saturée en NaCl. La phase organique est séchée sur Na₂SO4 filtrée et évaporée à sec. Après chromatographie sur gel de silice (35 g, AcOEt/Pentane 15:85), on récupère l'ether méthylique sous forme d'une huile incolore (192 mg, 85%) $[\alpha]^{20}_{D}$ -74 (c = 1,00, MeOH). Ce composé est mis en solution dans un mélange CH₃CN/ H₂O/CCl₄ (1:1,5:1, 3,5 ml) auquel on ajoute NaIO₄ (0,61 g, 2,9 mmol) et RuO₂ (3 mg). On agite vigoureusement pendant 48 h. Après évaporation du solvant le brut est repris dans AcOEt (10 ml) et lavé successivement par Na₂S₂O₃ 10% et H₂O saturée en NaCl. La phase organique est séchée sur Na₂SO₄, filtrée et évaporée à sec. L'huile obtenue (122 mg) est dissoute dans 1 ml d'éther et traitée par une solution de diazométhane dans l'éther jusqu'à persistance de la couleur jaune. Après évaporation du solvant on dissout le résidu dans 0,5 ml de TFA et laisse au repos pendant 15 min. Le solvant est éliminé et l'huile résultante solubilisée dans un mélange MeOH/H₂O (1:1, 2 ml). On ajoute à température ambiante K₂CO₃ (69 mg, 0,5 mmol). Après 1h d'agitation, on reprend par AcOEt (10 ml), lave par H₂O et concentre. On obtient 15 sous forme d'une huile incolore (40 mg, 33% pour 4 étapes). ¹H-RMN (CDCl₃) δ 1,23 (d, J = 7,8 Hz, 3 H, 2-Me), 1,65 à 1,74 (m, 1 H, 7-H), 1,80 à 2,07 (m, 3 H, 7-H' + 6-H₂), 2,55 (qd, J₁ = 7,8 J₂ = 1,3 Hz, 1 H, 2-H), 2,96 (ddd, J₁ = 4,3 J₂ = 8,2 J₃ = 12,6 Hz, 1 H, 5-H), 3,24 (s, 3 H, OMe), 3,45 à 3,52 (m, 2 H, 1-H + 5-H'), 3,98 (ddd, J₁ = 6,6 J₂ = 8,8 J₃ = 5,1 Hz, 1 H, 8-H). Anal. Calc. pour C₉H₁₅NO₂: C 63,9; H 8,9; N 8,3. Trouvé: C 64,1; H 9,1; N 8,0.

(2S,1'R,2'S)-N-(tert-Butoxycarbonyl)-2-(1'-méthoxy-2'-méthyl-3'-butényl)-pyrrolidine (16)

A une solution refroidie à -5°C de 13a (5,2 g, 20,4 mmol) et MeI (9,8 ml, 15,7 mmol) dans du DMF anhydre (150 ml), on ajoute par portion NaH (0,94 g, 23,5 mmol). On laisse agiter à température ambiante pendant 24 h. Après ajout de H₂O (10 ml) le DMF est évaporé sous pression réduite. Le résidu obtenu est repris à AcOEt (150 ml) et lavé successivement par KHSO4 5%, NaHCO3 5%, Na₂S₂O₃ 10%, et une solution saturée en NaCl. La phase organique est séchée sur Na₂SO₄, filtrée et évaporée à sec. Après chromatographie sur gel de silice (200 g, AcOEt/Pentane 5:95), on récupère le produit 16 sous forme d'une huile jaune (4,9 g, 90%). Rf = 0,42 (AcOEt/Pentane: 5:95); ¹H-RMN (DMSO-*d*₆) δ 1,02 (d, J = 6,6 Hz, 3 H, CH₃), 1,41 (s, 9H, Boc), 1,61 à 1,66 (m, 2 H, 4-H et 4-H'), 1,81 à 1,86 (m, 2 H, 3-H et 3-H'), 2,09 à 2,16 (m, 1 H, 2'-H), 3,06 à 3,18 (m, 1 H, 5-H), 3,29 à 3,39 (m, 1 H, 5-H'), 3,32 (s, 3 H, OMe), 3,50 à 3,62 (m, 1 H, 1'-H), 3,72 à 3,75 (m, 1 H, 2-H), 4,94 (dd, J₁ = 10,2 J₂ = 2,0 Hz, 1 H, 4'-H), 5,03 (dd, J₁ = 17,2 J₂ = 2,0 Hz, 1 H, 4'-H'), 5,67 à 5,72 (m, 1 H, 3'-H); FABMS *m/e* (int. rel.) 269 (MH⁺, 28), 170 (MH⁺- Boc, 60), 114 (HCO₂-pyrrolinium, 80), 70 (pyrrolinium, 60), 57 (tBu⁺, 100).

Acide (2*R*,3*R*,2'S)-3-[*N*-(*tert*-butoxycarbonyl)-pyrrolidin-2-yl]-2-méthyl-3-méthoxy-propanoïque: Boc-Dolaproine (17)

Oxydation en une étape selon la méthode décrite par Sharpless ¹⁷: l'alcène **16** (0,76 g, 2,80 mmol) est dissous dans le système CH₃CN/H₂O/CCl₄ (5:7,5:5 ml). Il est alors ajouté, successivement, à température ambiante, NaIO₄ (2,5 g, 11,6 mmol) et RuO₂ (15,6 mg, 2,5 %). Le mélange réactionnel est agité vigoureusement pendant 48 h. Après évaporation du solvant sous pression réduite, le brut est repris à AcOEt (100 ml) et lavé successivement par Na₂S₂O₃ 10% et H₂O saturée en NaCl. La phase organique est séchée sur Na₂SO₄ filtrée et évaporée à sec. Après chromatographie sur gel de silice (70 g, AcOEt/Pentane/AcOH: 30:70:1), on récupère **17** sous forme d'une huile jaune (0,65 g, 81%).

Oxydation du groupement allyle en deux étapes: dans un premier temps on utilise les conditions précédentes: l'alcène 16 (3,80 g, 14,1 mmol) est dissous dans le système CH₃CN/H₂O/CCl₄ (40:60:40 ml). Il est alors ajouté successivement à cette solution, à température ambiante NaIO₄ (24,8 g, 116 mmol) et RuO₂ en solution aqueuse (60%) (79 mg, 0,3 mmol). Le mélange réactionnel est laissé sous agitation magnétique jusqu'à la consommation totale (6h) de 16 suivie en CCM (Rf (RCHCH₂) = 0,74; Rf (RCHO) = 0,41; Rf (RCOOH) = 0,12 ; AcOEt/Pentane: 10:90). La réaction est traitée comme il est décrit au-dessus. Le brut obtenu est immédiatement remis en réaction en suivant la procédure mise au point par le groupe de Masamune¹⁸. Après solubilisation dans un mélange 1:1 de tBuOH et de KH₂PO₄ 1,25 M (180 ml) et ajustement du pH entre 6 et 7 à l'aide de NaOH 1N, on ajoute une solution de KMnO₄ 1M (90 ml) et on laisse sous agitation vigoureuse pendant 15 min. Le mélange est lavé plusieurs fois par une solution saturée de Na₂S₂O₃ et par une solution de KHSO₄ 5% jusqu'à pH 3. Les phases aqueuses sont réextraites plusieurs fois à AcOEt, puis l'ensemble des phases organiques sont lavées par une solution saturée en NaCl, séchée sur Na₂SO₄, filtrée et évaporée à sec sous pression réduite. Après chromatographie sur colonne de gel de silice (200 g, AcOEt/Pentane/AcOH: 30:70:1), on récupère la dolaproïne (17) sous forme d'une huile jaune (3,37 g, 84%). Rf = 0,33 (AcOEt/Pentane/AcOH: 30:70:1); $[\alpha]^{20}_{D}$ -61 (c=1, MeOH); ¹H-RMN (DMSO-d₆) δ 1,11 (d, J = 6,8 Hz, 3 H, 2-CH₃), 1,40 (s, 9H, Boc), 1,64 à 1,77 (m, 1 H, 4'-H), 1,75 à 1,89 (m, 3 H, 3'-H, 3'-H' et 4'-H'), 2,28 à 2,36 (m, 1 H, 2-H), 3,04 à 3,16 (m, 1 H, 5'-H); 3,32 (s, 3 H, OMe), 3,30 à 3,43 (m, 1 H, 5'-H'), 3,67 à 3,78 (m, 2 H, 3-H et 2'-H), 12,11 (s, 1 H, COOH); FABMS *m/e* (int. rel.) 288 (MH⁺, 31), 188 (MH⁺- Boc, 41), 114 (HCO₂pyrrolinium, 100); Anal. calc. pour C₁₄H₂₅NO₅: C, 58,5; H, 8,8; N, 4,9. Trouvé C, 58,0; H, 8,9; N, 4,9.

(1'S)-2-[1'-((Benzyloxycarbonyl)amino)-2'-phényléthyl]-1,3-thiazole (Z-dolaphénine) (18). En suivant la procédure décrite par Irako et coll.¹⁹, à partir de Z-L-Phe-OH (15,0 g, 50 mmol) on obtient 18 qui est cristallisé dans Et₂O/Hexane (10,6 g, 63%). Pf = 92-93°C; $[\alpha]^{20}_D$ -2 (c=1, MeOH).

Bromure de (1'R,S)-1'H-2-(1'-amino-2'-phényléthyl)-1,3-thiazolium (19). A une solution refroidie à 0 °C de **18** (2,00 g, 6,00 mmol) dans CH₂Cl₂ (50 ml), on ajoute une solution à 33% de HBr dans AcOH (50 ml). Après 2 h d'agitation à cette température **17** est précipité par addition de Et₂O (150 ml) et récupéré par essorage (1,8 g, 99%). Une analyse HPLC (gradient de 40 à 70% de B en 10 mn) après dérivatisation par le réactif de Marfey²⁷, montre la présence de 2 pics à 7,12 et 7,87 mn dans le rapport 48:52 correspondant aux deux énantiomères de **19**.

Couplages peptidiques. Procédure générale. A une solution de P-Aaa-OH (1 équiv.) et de sel d'ammonium de H₂N-Bbb-P' (1 équiv.) dans CH₂Cl₂ filtré sur alumine (2 ml/mmol) sont successivement ajoutés la DIEA (3,5 équiv.) et l'agent de couplage (1,5 équiv.). Après 1h d'agitation à température ambiante, le mélange réactionnel est concentré sous pression réduite, repris par AcOEt (20 ml/mmol) et la phase organique est lavée par des solutions de KHSO₄ 5% (3 x 5 ml/mmol), NaHCO₃ 5% (3 x 5 ml/mmol), et avec une solution saturée en NaCl jusqu'à pH neutre. La phase organique est alors séchée sur Na₂SO₄, filtrée et concentrée à sec (toute modification de ce mode expérimental est mentionnée pour les produits concernés).

Boc-Dap-Doe (20a). A partir de 17 (2,1 g, 7,3 mmol) et 19 (1,90 g, 10,1 mmol), en utilisant le BOP²² comme agent de couplage on obtient après chromatographie sur colonne de silice (250 g, AcOEt/Pentane 35:65) 20a (1,51 g, 42%) et 20b (1,65 g, 46%).

20a: Rf = 0,23 (AcOEt/Pentane 35:65); TR= 7,33 mn (gradient de 40 à 90% de B en 15 min); PF = 125-128°C (litt 131-132°C^{6c}); $[\alpha]^{20}_{D}$ -80 (c=1, MeOH) (litt -76,5^{6c}); ¹H-RMN (DMSO-*d*₆) δ 1,05 (d, J = 6,7 Hz, 3 H, CH₃ Dap), 1,35 (s, 9 H, Boc), 1,38 à 1,49 (m, 1 H, 4'-H Dap), 1,53 à 1,69 (m, 3 H, 4'-H' et 3'-H₂ Dap), 2,18 (qd, J₁ = 9,6 J₂ = 6,7 Hz, 1 H, 2-H Dap), 2,98 (t, élargi 1 H, J = 13,5 Hz, 2'-H Doe), 3,04 à 3,16 (m, 1 H, 5'-H Dap); 3,23 (s, 3 H, OMe Dap); 3,30 à 3,39 (m, 1 H, 5'-H' Dap), 3,43 (dd, J₁ = 3,8 J₂ = 14,0 Hz, 1 H, 2'-H'

Doe), 3,48 à 3,52 (m, 1 H, 3-H Dap); 3,67 à 3,74 (signal large, 1 H, 2'-H Dap) 5,37 à 5,43 (m, 1 H, 1'-H Doe), 7,14 à 7,30 (m, 5 H, Ar Doe), 7,73 (d, J = 3,3 Hz, 1 H, 4-H Doe), 7,77 (d, J = 3,3 Hz, 1 H, 5-H Doe), 8,63 (d, J = 8,5 Hz, 1 H, NH Doe); FABMS *m/e* (int. rel.) 474 (MH⁺, 28), 374 (MH⁺- Boc, 9), 205 (H₂Doe⁺, 12), 188 ((Doe-NH)⁺, 55), 170 (HDap⁺, 27), 138 (HDap⁺-MeOH, 32), 57 (tBu⁺, 100). Anal. calc. pour $C_{25}H_{35}N_{3}O_{4}S$: C, 63,4; H, 7,5; N, 8,9. Trouvé: C, 62,9; H, 7,9; N, 8,8.

20b: Rf = 0,32 (AcOEt/Pentane 35:65); TR= 7,93 mn: PF= 70-72°C; $[\alpha]^{20}D^{-24}$ (c=1, MeOH); ¹H-RMN (DMSO-*d*₆) δ 0,84 (d, J = 6,5 Hz, 3 H, CH₃ Dap), 1,33 (s, 9 H, Boc), 1,53 à 1,66 (m, 1 H, 3'-H Dap), 1,76 à 1,90 (m, 3 H, 3'-H' et 4'-H₂ Dap), 2,16 à 2,24 (m, 1 H, 2-H Dap), 2,99 (dd, 1 H, J₁ = 10,8 J₂ = 13,9 Hz, 2'-H Doe), 3,03 à 3,12 (m, 1 H, 5'-H Dap); 3,27 (s, 3 H, OMe Dap); 3,34 à 3,43 (m, 1 H, 5'-H' Dap), 3,43 (dd, J₁ = 4,6 J₂ = 13,9 Hz, 1 H, 2'-H' Doe), 3,55 à 3,66 (m, 1 H, 3-H Dap); 3,76 à 3,82 (m, 1 H, 2'-H Dap) 5,31 à 5,38 (m, 1 H, 1'-H Doe), 7,15 à 7,29 (m, 5 H, Ar Doe), 7,63 (d, J = 3,2 Hz, 1 H, 4-H Doe), 7,76 (d, J = 3,2 Hz, 1 H, 5-H Doe), 8,61 (d, J = 8,7 Hz, 1 H, NH Doe); FABMS *m/e* (int. rel.) 474 (MH⁺, 43), 374 (MH⁺- Boc, 29), 188 ((Doe-NH)⁺, 100), 170 (HDap⁺, 54), 138 (HDap⁺-MeOH, 53), 57 (tBu⁺, 51). Anal. calc. pour C₂₅H₃₅N₃O₄S: C, 63,4; H, 7,5; N, 8,9. Trouvé: C, 61,5; H, 7,7; N, 8,4.

Boc-Dil-Dap-Doe (21a). 20a (1,00 g, 2,10 mmol) est déprotégé par traitement pendant 30 mn dans du TFA (10 ml). Aprés élimination du solvant, on récupère le sel de TFA sous forme d'une huile jaune (1,04 g, 99%). Ce dernier est couplé à 8 (0,77 g, 2,50 mmol) en utilisant le BOP comme agent de couplage pour conduire après chromatographie (50 g, AcOEt/Pentane 85:35) à **21a** qui cristallise dans AcOEt/Pentane (1,10 g, 82%). Rf = 0,47 (AcOEt/ Pentane 80:20); PF = 98-100°C (litt 58°C^{6c}); $[\alpha]^{20}$ -58 (c=1, MeOH) (litt -71°^{6c}); FABMS *m/e* (int. rel.) 659 (MH⁺, 10), 559 (MH⁺- Boc, 9), 374 (H₂DapDoe⁺, 3), 205 (H₂Doe⁺, 7), 188 ((Doe-NH)⁺, 30), 186 (HDil⁺, 22), 170 (HDap⁺, 26), 154 (HDil⁺-MeOH, 28), 138 (HDap⁺-MeOH, 27), 70 (pyrrolinium, 52), 57 (tBu⁺, 100).

Z-Val-Dil-Dap-Doe (22a). 21a (1,1 g, 1,67 mmol) est déprotégé par traitement pendant 30 mn dans du TFA (5 ml). Aprés élimination du solvant, le résidu obtenu est repris à AcOEt et lavé plusieurs fois avec des solutions de NaHCO₃ 5%. La phase organique est ensuite séchée sur Na₂SO₄, filtrée et concentré sous vide pour récupérer l'amine libre sous forme d'une huile jaune (0,92 g, 99%). Cette dernière est couplé à Z-Val-OH (1,75g, 3 mmol) en utilisant le BroP (1,17 g, 3 mmol) comme agent de couplage pour conduire après chromatographie (60 g, AcOEt/Pentane 70:30) à 22a qui cristallise dans Et₂O (0,89 g, 75%). Rf = 0,36 (AcOEt/Pentane 70:30); PF = 75-80°C; $[\alpha]^{20}$ -48 (c=1, CHCl₃); FABMS *m/e* (int. rel.) 792 (MH⁺, 15), 658 (MH⁺- Z, 3), 205 (H₂Doe⁺, 8), 188 ((Doe-NH)⁺, 18), 186 (HDil⁺, 32), 170 (HDap⁺, 10), 154 (HDil⁺-MeOH, 15), 138 (HDap⁺-MeOH, 10), 100 (H-Val⁻⁺, 25), 91 (tropilium, 100). Anal. calc. pour C₄₃H₆₁N₅O₇S: C, 65,2; H, 7,8; N, 8,8. Trouvé: C, 65,2; H, 7,8; N, 8,8.

Dov-Val-Dil-Dap-Doe (Dolastatine 10) (1). A une solution de **22a** (1,02 g, 1,29 mmol) dans CH_2Cl_2 (10 ml) refroidie à 0°C, on ajoute HBr 33% dans AcOH (10 ml) et on laisse agiter à cette température pendant 2h. Le bromhydrate est précipité par addition d'Et₂O (80 ml) et récupéré par essorage (0,89 g, 94%). A une solution refroidie (0 °C) de Me₂Val-OH (Dov) (0,81 g, 2,70 mmol), préparé selon Bowman et Stroub²⁸, dans du THF

(8 ml), on ajoute de la TEA (0,035 ml, 0,24 mmol) puis du COMODD (0,63 g, 2,41 mmol) et on laisse agiter à cette température pendant 3h. Le bromhydrate préparé précédemment est ajouté au mélange réactionnel ainsi que de la TEA (0,35 ml, 2,4 mmol) et on laisse agiter à température ambiante pendant 24h. Après évaporation du solvant sous pression réduite, le brut obtenu est repris par AcOEt. La phase organique est lavée par NaHCO₃ 5% puis une solution saturée en NaCl jusqu'à pH neutre, séchée sur Na₂SO₄, filtrée et concentrée à sec. Une aliquote (120 mg) de l'huile obtenue (1,10g) est purifiée par HPLC préparative (Colonne C8 ultrabase Shandon 25 x 500 mm, 10 mm, débit 9 ml/ min. Eluant: B= CH₃CN / A= H₂O. Méthode: gradient de 20 à 80% de B en 90 min et isocratique à 80% de B pendant 30 min) pour obtenir 1 qui cristallise dans AcOEt/Pentane (80 mg, 53%). TR = 6,10 mn (gradient de 10 à 70% de B en 10 mn). PF = 109-111°C (litt. 102-106°C ^{6a}, 104-107°C ^{6c}, 107-108°C ^{6b}); $[\alpha]^{20}_{D}$ -76 (c = 0,25, MeOH) (litt -57 (c = 0,026, MeOH)^{6a}, -68,8 (c = 0,032, MeOH)^{6b}, -59,8 (c = 0,035, MeOH)^{6c}, -78,4 (c = 0,88, MeOH) ^{6c}); FABMS *m/e* (int. rel.), 785 (MH⁺, 100), 188 ((Doe-NH)⁺, 30), 186 (HDil⁺, 12), 170 (HDap⁺, 12), 154 (HDil⁺-MeOH, 18), 138 (HDap⁺-MeOH, 14), 100 (H-Val-⁺, 100). Anal. Calc. pour C4₂H₆₈N₆O₆S: C, 64,3; H, 8,7; N, 10,7. Trouvé: C, 63,9; H, 8,5; N, 10,6. Les caractéristiques RMN (¹H, ¹³C) sont identiques aux données de la littérature ^{6a}.

Boc-Dil-Dap-(*R*)-**Doe** (21b). En suivant la procédure décrite pour 21a et en partant de 20b (0,99 g, 2,10 mmol), on obtient 20b sous forme d'une gomme blanche (0,80 g, 96%); Rf = 0,48 (AcOEt/ Pentane: 70/30); $[\alpha]^{20}_{D}$ -23 (c = 1, MeOH); FABMS *m/e* (int. rel.) 659 (MH+, 11), 559 (MH+- Boc, 9), 374 (H₂DapDoe⁺, 2), 205 (H₂Doe⁺, 7), 188 ((Doe-NH)⁺, 29), 186 (HDil⁺, 23), 170 (HDap⁺, 27), 154 (HDil⁺-MeOH, 28), 138 (HDap⁺-MeOH, 26), 70 (pyrrolinium, 53), 57 (tBu⁺, 100). Anal. calc. pour C₃₅H₅₄N₄O₆S: C, 62,8; H, 8,3; N, 8,5. Trouvé C, 62,8; H, 8,5; N 8,2.

Z- Val- Dil- Dap-(R)- Doe (22b)

En suivant la procédure décrite pour 22a et en partant de 21b (0,70 g, 1,06 mmol), on obtient 22b qui est cristallisée dans Et₂O (0,56 g, 70%); Rf = 0,26 (AcOEt/Pentane 80:20); PF = 74-76°C; $[\alpha]^{20}_D$ -32 (c=1, MeOH); FABMS *m/e* (int. rel.) 792 (MH⁺, 22), 658 (MH⁺- Z, 10), 188 ((Doe-NH)⁺, 28), 186 (HDil⁺, 30), 170 (HDap⁺, 15), 154 (HDil⁺-MeOH, 22), 138 (HDap⁺-MeOH, 14), 100 (H-Val-⁺, 28), 91 (tropilium, 100). Anal. calc. pour C₄₃H₆₁N₅O₇S: C, 65,2; H, 7,8; N, 8,8; O. Trouvé: C, 65,0; H, 8.0; N, 8,6.

Dov-Val- Dil- Dap-(*R*)-**Doe (23b**). En suivant la procédure décrite pour **1** et en partant de **22b** (0,23 g, 0,31 mmol), on obtient **23** qui est cristallisée dans Et₂O (0,12 g, 51%); $PF = 119-121^{\circ}C$; $[\alpha]^{20}_{D}$ -60 (c=0,1, MeOH); TR= 7,0 min (gradient de 10 à 70% de B en 10 min); FABMS *m/e* (int. rel.), 785 (MH⁺, 100), 188 ((Doc-NH)⁺, 47), 186 (HDil⁺, 25), 170 (HDap⁺, 25), 154 (HDil⁺-MeOH, 34), 138 (HDap⁺-MeOH, 29), 100 (H-Val⁻⁺, 100). Anal. Calc. pour C₄₂H₆₈N₆O₆S: C, 64,3; H, 8,7 N, 10,7. Trouvé: C, 64,3; H, 9,0; N, 10,4.

Protons ^a	Confor	mère 1	Confor	mère 2
	δ (ppm)	J (Hz)	δ (ppm)	J (Hz)
4	7,72	3,3	7,74	3,3
5	7,26	3,3	7,28	3,3
6	5,68		5,58	
6a	3.43	14,2 et 6,5	3,43	
6a'	3,24	14,2 et 8,2	3,21	
7	7,19		6,31	8,1
9	2,28		2,15	
9a	1.17	7.0	1,11	7.0
10	3,90	8,4 et 2,1	3,48	9,5 et 1,6
10a	3,32 et 3,28		3,36 et 3,20	
11	3,84		3,91	
12	1,61		1,60	
12'	1,86		1,83	
13	1,68		1,69	
13'	1,94		1,95	
14	3.40		3,69	
14'	3,36		3,25	
17	2,42		2,42	
17'	2,36		2,42	
18	4,11		4,05	
18a	3,29 et 3,32		3,20 et 3,36	
19	4,71		4,78	
19a	1,73		1,79	
19b	1.02		-	
19b'	1,37		1,35	
19c	0,82		0.85	
19d	0,98		0,94	
20a	3,00		2,99	
22	4,75		4,77	
22a	1,99		1,96	
22c	0.93		0.86	
23	6,82		6,85	
25	2,46		2,47	
26	2,06		2,10	
27	0,96		0,98	
28	0,90		0,91	
25b.c	2.28		2.28	

Table: caractéristiques	H-RMN	(DMSO-d	k) de	23h
Table, caracteristiques	-TT-T/TATA	1011100-0	ດເບ	

a : numérotation définie par Pettit (ref 6a)

REFERENCES

- 1. Pline l'Ancien, Historia Naturalis, Lib. IX-72, Lib. XXXII-3.
- Pettit, G. R.; Kamano, Y.; Herald, C. L.; Fujii, Y.; Kizu, H.; Boyd, M. R.; Boettner, F. E.; Doubek, D. L.; Schmidt, J. M.; Chapuis, J.-C.; Michel, C. *Tetrahedron* 1993, 49, 9151-9170.
- 3. Bai, R.; Pettit, G. R.; Hamel, E. J. Biol. Chem. 1990, 265, 17141-17149.
- 4. Bai, R.; Roach, M. C.; Jayaram, S. K.; Barkoczy, J.; Pettit, G. R.; Ludueña, R. F.; Hamel, E.; Biochem. Pharmacol. 1993, 45, 1503-1515.

- (a) Steube, K.G.; Grunicke, D.; Pietsch, T.; Gignac, S. M.; Pettit, G. R.; Drexler, H. G. Leukemia 1992, 6, 1048-1053; (b) Beckwith, M.; Urba, W. J.; Longo, D. L. J. Natl. Cancer Inst. 1993, 85, 483-488; (c) Hu, Z.; Gignac, S. M.; Quentmeier, H.; Pettit, G; Drexler, H. G. Leukemia Res. 1993, 17, 333-339.
- (a) Pettit, G. R.; Singh, S. B., Hogan, F.; Lloyd, P.; Herald, D. L.; Burkett, D. D.; Clewlow, P. J. Am. Chem. Soc. 1989, 111, 5463-5465; (b) Tomioka, K.; Kanai, M.; Koga, K. Tetrahedron Lett. 1991, 32, 2395-2398; (c) Shioiri, T.; Hayashi, K.; Hamada, Y. Tetrahedron 1993, 49, 1913-1924.
- 7. Jouin, P.; Poncet, J.; Dufour, M.-N.; Pantaloni, A.; Castro, B. J. Org. Chem. 1989, 54, 617-627.
- 8. Patino, N.; Frérot, E.; Galeotti, N; Poncet, J.; Dufour, M. N.; Jouin, P. Tetrahedron 1992, 48, 4115-4122.
- 9. Maugras, I.; Poncet, J.; Jouin, P. Tetrahedron 1990, 46, 2807-2816.
- 10. Hoffmann, R. W. Angew. Chem. Int. Ed. Engl. 1982, 21, 555-566.
- 11. Hoffmann, R. W.; Zeiß, H. J. J. Org. Chem. 1981, 46, 1309-1314.
- Roush, W. R.; Ando, K.; Powers, D. B.; Palkowitz, A. D.; Halterman, R. L. J. Am. Chem. Soc. 1990, 112, 6339-6348.
- 13. Fehrentz, J.-A.; Castro, B. Synthesis 1983, 676-678.
- (a) Rich, D. H.; Sun, E. T. O.; Ulm, E. J. Med. Chem. 1980, 23, 27-33; (b) Dufour, M.-N.; Jouin, P.; Poncet, J.; Pantaloni, A.; Castro, B. J. Chem. Soc., Perkin Trans. 1 1986, 1895-1899; (c) Ibuka, T.; Habashita, H.; Otaka, A.; Fujii, N.; Oguchi, Y.; Uyehara, T.; Yamamoto, Y.; J. Org. Chem. 1991, 56, 4370-4382.
- (a) Hoffmann, R. W.; Weidmann, U. Chem. Ber. 1985, 118, 3966-3979; (b) Roush, W. R.; Adam, M. A.; Walts, A. E.; Harris, D. J. J. Am. Chem. Soc. 1986, 108, 3422-3434.
- 16. Roux, F.; Maisonnasse, Y.; Maugras, I.; Poncet, J.; Niel, G.; Jouin, P. : soumis pour publication.
- 17. Carlsen, P. H. J.; Katsuki, T.; Martin, V. S., Sharpless, K. B. J. Org. Chem. 1981, 46, 3936-3938.
- 18. Abiko, A.; Roberts, J. C.; Takemasa, T.; Masamune, S. Tetrahedron Lett. 1986, 27, 4537-4540.
- 19. Irako, N.; Hamada, Y.; Shioiri, T. Tetrahedron 1992, 48 7251-7264.
- 20. Schmidt, U.; Gleich, P.; Greisser, H.; Utz, R. Synthesis 1986, 992-998.
- 21. Bredenkamp, M. W.; Holzapfel, C. W.; Snyman, R. M.; van Zyl, W. J. Synth. Commun. 1992, 22, 3029-3039.
- 22. Castro, B.; Dormoy, J.-R.; Evin, G.; Selve, C. Tetrahedron Lett. 1975, 31, 1219-1222.
- 23. Coste, J.; Frérot, E.; Jouin, P.; Castro, B. Tetrahedron Lett. 1991, 32, 1967-1970.
- 24. Frérot, E.; Coste, J.; Poncet, J.; Jouin, P.; Castro, B. Tetrahedron Lett. 1992, 33, 2815-2816.
- Pour la même réaction Shioiri ne décrit pas l'acylation par le TFA et donne un rendement de 91% (voir ref 6c).
- 26. Grenouillat, D.; Senet, J.-P.; Sennyey, G. Tetrahedron Lett. 1987, 28, 5827-5830.
- 27. Marfey, P. Carlsberg Res. Commun. 1984, 49, 591-596.
- 28. Bowman, R. E.; Stroub, H. H. J. Chem. Soc. 1950, 1342-1345.

(Received in Belgium 6 January 1994; accepted 7 February 1994)